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Abstract

In this paper, the mean square (MS) stability and exponential mean square (EMS) stability of multi-variable switched stochastic systems are
investigated. Based on the concept of the average dwell-time and the ratio of the total time running on all unstable subsystems to the total time
running on all stable subsystems, some sufficient conditions are given to ensure the MS stability and EMS stability of the switched stochastic
systems involved. Further, for the switched stochastic control systems with all subsystems controllable or stabilizable, EMS stabilization controls
and sufficient conditions on EMS stabilization are presented, and the convergent rates of the closed-loop systems are obtained.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Since switched control systems exist widely in engineering
technology and social systems (Mariton, 1990), the analysis
and control problems of them have attracted extensive atten-
tion from many researchers. Many important progress and re-
markable achievements have been made on issues such as con-
trollability, reachability and stabilizability (Sun, Ge, & Lee,
2002; Xie & Wang, 2003), control and switching law design
(Cheng, Guo, Lin, & Wang, 2005; Daafouz, Riedinger, & Iung,
2002; Ishii & Francis, 2002; Liberzon & Morse, 1999; Li,
Wen, & Soh, 2001), optimal control (Giua, Seatzu, & Van Der
Mee, 2001) and so on. Among others, stability analysis and
stabilization control are two hot topics. The basic problems
considered include stability analysis for systems with specific
switching laws (Branicky, 1998), stability analysis for systems
with arbitrary switching laws (Liberzon, Hespanha, & Morse,
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1999), and design of stabilization switching laws (Daafouz
et al., 2002; Li et al., 2001), etc. For the first topic, the con-
cepts such as dwell-time and average dwell-time, etc. are
introduced by Hespanha and Morse (1999), and then, used in
Zhai, Hu, Yasuda, and Michel (2001) and Hespanha (2004),
which make it possible for us to analyze the stability proper-
ties of switched systems with stable and unstable subsystems.
For the second topic, common Lyapunov function and linear
matrix inequality were used for stabilization control of lin-
ear switched systems with arbitrary switching laws (Liberzon
et al., 1999). And the concepts of switching frequency and
dwell-time were used for stabilization control of switched
systems with controllable and uncontrollable subsystems in
Cheng et al. (2005), where a subtle capacity characterization
of feedback matrix on improving the convergent rate of the
closed-loop linear time-invariant systems is provided, which
is the key to our success of stabilization control for switched
stochastic (SS) systems (see Section 4). The works mentioned
above mainly focused on deterministic systems. For stochastic
switched control systems, although some results have been
given (Caines & Zhang, 1996, and the references therein),
they are merely concentrated on the case where the switching
laws are random, Markovian processes with known transition
probability.
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The systems studied in this paper are with deterministic
switching laws and unknown stochastic disturbances. By de-
scribing quantitatively the quadratic stability and instability of
matrices, based on the concept of the average dwell-time and
the ratio of the total time running on all unstable subsystems to
the total time running on all stable subsystems, some sufficient
conditions on mean square (MS) stability and exponential mean
square (EMS) stability are given, respectively. In addition, by
analyzing the impact of the uncontrollable part of an uncon-
trollable but stabilizable (UCbS) stochastic system on the con-
vergent rate of the closed-loop system, the stabilization control
problems are investigated for two classes of SS control sys-
tems, one is with all subsystems controllable, and the other is
with some subsystems controllable and some UCbS. Some suf-
ficient conditions ensuring the EMS stability of the closed-loop
systems are obtained, and the convergent rates of the closed-
loop systems are analyzed. Unlike conventional time-varying
parameter systems, here it is only required that the switching
law �(t) is observable. In other words, for control designers, at
any time instance t > t0, only �(s), ∀s ∈ [t0, t] is known and
available for control design. As for �(s) for s in (t, ∞), the de-
signers probably do not know any information before the time
instance t.

The remainder of this paper is organized as follows. In Sec-
tion 2, some notations and definitions are introduced and the
problems to be studied are formulated. In Section 3, the stabil-
ity of autonomous (i.e. control-free) SS systems is analyzed,
and some sufficient conditions on MS stability and EMS stabil-
ity are given, respectively. In Section 4, the stabilization prob-
lem of SS systems is investigated, some sufficient conditions
on EMS stability and the convergent rate of the closed-loop
systems are obtained. Section 5 concludes the paper.

2. Notations and problem formulation

Consider the following SS system

dx(t) = A�(t)x(t) dt + B�(t)u�(t)(t) dt

+ �(t, x(t)) dW(t) (1)

with initial condition x(t0)=x0, where function �(·): [t0, ∞) →
I = {1, 2, . . . , N} is the switching law and is deterministic
(namely, not random), piecewise constant and right continuous;
Ai ∈ Rn×n and Bi ∈ Rn×mi for i ∈ I are constant matrices;
x(t) ∈ Rn, ui ∈ Rmi (i ∈ I) are system state and inputs,
respectively; �(t, x) = (�1(t, x), . . . , �k(t, x))T ∈ Rn×k is the
noise coefficient, continuous on (t, x) and uniformly Lipschitz
continuous on x; W(t) ∈ Rk is a standard Brownian motion.

Throughout the paper, Rn×m denotes the set of all n × m

real matrices; E(·) denotes the mathematical expectation; ‖ · ‖
denotes the Euclidean norm in the n-dimensional real space
Rn and the corresponding induced matrix norm; �(A) denotes
the set of all eigenvalues of a square matrix A, and for a real
symmetric matrix A, �M(A) and �m(A) denotes its maximal
eigenvalue and minimal eigenvalue, respectively; C− denotes
the open left half complex plane; I denotes the identity matrix

with proper dimension; for any given matrix or vector X, XT

denotes its transpose.
This paper investigates the MS stabilization control of the

system (1). To do so, we introduce some concepts on MS sta-
bility for the following stochastic systems:

dx(t) = A�(t)x(t) dt + �(t, x(t)) dW(t), x(t0) = x0. (2)

Definition 1. For System (2), if its solution process {x(t), t � t0}
with x(t0)=x0 is existent and unique, and satisfies supt � t0

E

‖x(t)‖2 < ∞, then the solution process is said MS sta-
ble; in addition, if for some positive constants M0 and a,
E‖x(t)‖2 �M0e−a(t−t0), ∀ t � t0, then the solution process is
said EMS stable (with convergent rate a).

System (2) is said MS stable if for ∀x0 ∈ Rn, the {x(t), t � t0}
with x(t0) = x0 is MS stable, and is said EMS stable if for
∀x0 ∈ Rn, the {x(t), t � t0} with x(t0) = x0 is EMS stable.

Definition 2. The problem to design a control law u�(t)(t) such
that System (1) is MS (or EMS) stable is said MS (correspond-
ingly, EMS) stabilization control problem.

Definition 3 (Hespanha & Morse, 1999). For any given �(t)

and t > s� t0, let N�(s, t) be the switching number of �(t) on
interval [s, t). For any given N0 > 0 and �∗ > 0, set S[�∗, N0]=
{�(·) : N�(s, t)�N0 + (t − s)/�∗, ∀t � t0, ∀s ∈ [t0, t)}. Then
�∗ and N0 are called average dwell-time and chatter bound
of S[�∗, N0], respectively. For a given �(t) ∈ S[�∗, N0], the
constant �� determined by 1/�� = sups � t0

supt>s(N�(s, t) −
N0)/(t − s) is called the average dwell-time of �(t).

Remark 1. In fact, for any given N0 > 0, the average dwell-
time �∗ > 0 in Definition 3 is the infimum of the average dwell-
time �� of all �(t) ∈ S[�∗, N0] and we have

N�(s, t)�N0 + (t − s)/��. (3)

3. Mean square stability of SS systems

For studying the MS and EMS stability of System (2), we
first characterize the quadratically stable convergence rate of
stable matrices.

For any given n × n positive definite (PD) matrix P0,
if AT

i P0 + P0Ai < 0, then along the trajectory of ẋ = Aix

Lyapunov function V (x) = xTP0x satisfies V̇ = xT[AT
i P0 +

P0Ai]x��V (x), where �=−[�M(AT
i P0+P0Ai)]/�M(P0) > 0.

This implies that V (x)�V (x(t0))e−�(t−t0), ∀t � t0. Here we
name this � as the convergent rate of quadratic stability of Ai .

Inspired by this, we determine the largest � with respect to all
PD matrices P. For any given � ∈ (0, 1), set D= {P ∈ Rn×n :
P �0, ‖P ‖ = 1}, D� = {P ∈ Rn×n : P ��I, ‖P ‖ = 1}. For
any given n × n matrix set A = {Ai, i ∈ I}, let

ai(A) =
{min

P∈D
�M(PAi + AT

i P ), �(Ai) ⊂ C−,

max
P∈D�

�M(PAi + AT
i P ), �(Ai) /⊂ C−; (4)
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for any given stable matrix Ai ∈ A, let Pi1(A) = {P ∈ D :
�M(PAi +AT

i P )=ai(A)}, for any given unstable matrix Ai ∈
A, let Pi2(A)={P ∈ D� : �M(PAi +AT

i P )=ai(A)}. Denote

Pi (A) =
{
Pi1(A), �(Ai) ⊂ C−,

Pi2(A), �(Ai) /⊂ C−; (5)

{
a+(A) = max

i∈I
max (ai(A), 0),

a−(A) = min
i∈I

max (|ai(A)|, 0); (6)

�m = min

(
min
i∈I

inf
P∈Pi (A)

�m(P ), min
P∈D�

�m(P )

)
, (7)

�M = max
i∈I

sup
Pi∈Pi (A)

�M(P ), h = ln
�M

�m

. (8)

In the following, we will denote ai(A), Pi (A), a+(A) and
a−(A) by ai , Pi , a+ and a− for short, respectively.

Remark 2. All sets Pi (i ∈ I) are nonempty, since D and
D� are bounded and closed, and �M(PAi +AT

i P ) is continuous
and homogeneous on P. Besides, it is easy to show that for
∀Pi ∈ Pi , �M = 1, PiAi + AT

i Pi �aiI .

Remark 3. When �(Ai) ⊂ C−, the ai defined on D in (4) can
uniquely measure the maximal convergence rate of quadratic
stability of matrix Ai in some sense. Actually, noticing that
P0/�M(P0) ∈ D, and by (4) we have

� = −�M

(
AT

i

P0

�M(P0)
+ P0

�M(P0)
Ai

)
� − ai .

This shows that, for any PD matrix P0, if Ai is quadratic stable,
then the convergent rate is not greater than −ai .

Definition 4. For System (2), given matrix set A = {Ai, i ∈
I} and switching law �(t), let T −

� (s, t;A) and T +
� (s, t;A)

denote, respectively, the total time running on all stable subsys-
tems and the total time running on all unstable subsystems of
System (2) in [s, t); and for ∀a∗ ∈ (0, a−] and �∗ > 0, define

S1[a∗, �∗;A]

=
{

�(·) : sup
t>s � t0

T +
� (s, t;A)

T −
� (s, t;A)

� a− − a∗

a+ + a∗ , �� ��∗
}

,

S2[a∗, �∗;A] = {�(·) : �(t) ∈ S1[a∗, �∗;A], �� > �∗}.

Remark 4. By Definition 4, for ∀�(t) in S1[a∗, �∗;A] (or
S2[a∗, �∗;A]), the ratio of T +

� (s, t;A) to T −
� (s, t;A) has an

upper bound (a− − a∗)/(a+ + a∗), or equivalently,

a+T +
� (s, t;A) − a−T −

� (s, t;A)

� − a∗(t − s) ∀t > s� t0.

In particular, when all Ai (i ∈ I) are stable, S1[a∗, �∗;A]
(and S2[a∗, �∗;A]) includes all �(t) with average dwell-time
no less than (correspondingly, larger than) �∗.

Lemma 1. Consider the following stochastic system:

dx(t) = Ax(t) dt + �(t, x(t)) dW(t), x(t0) = x0,

where A ∈ Rn×n is a constant matrix, W(t) and �(t, x) are
similar to (1). If the initial value x0 satisfies E‖x0‖2 < ∞ and
�r (t, x) (r = 1, 2, . . . , k) satisfies

‖�r (t, x(t))‖�c‖x(t)‖ + b(t) ∀t � t0, (9)

where c is a nonnegative constant, b(t) is random process mak-
ing Eb2(t) locally Lebesgue integrable on [t0, ∞), then the
{x(t), t � t0} of this system is existent and unique, and for any
PD matrix P ∈ Rn×n,

E[xT(t)Px(t)]�ea(t−t0)E[xT
0 Px0]

+ 2k�M(P )

∫ t

t0

ea(t−s)Eb2(s) ds, (10)

where a = [�M(PA + ATP) + 2k�M(P )c2]/�m(P ).

Proof. From Friedman (1975) it can be seen that {x(t), t � t0}
is existent and unique. Then, notice the independent in-
crement property of Brownian motion, by Itô formula and
Bellman–Gronwall inequality, one can get (10). �

Corollary 1. Under the conditions of Lemma 1 with b(t) ≡
0 in (9), then E[xT(t)Px(t)]�E[xT

0 Px0]ea(t−t0), where a =
[�M(PA + ATP) + k�M(P )c2]/�m(P ).

Lemma 2. For System (2), if E‖x0‖2 < ∞ and �(t, x) satis-
fies (9), then for ∀�(t) ∈ S1[a∗, �∗;A], the {x(t), t � t0} of
System (2) is existent, unique and has

E‖x(t)‖2 �eh+�(t0,t)E‖x0‖2

+ 2k

∫ t

t0

eh+�(s,t)Eb2(s) ds, (11)

where �(s, t)=hN�(s, t)+(2kc2−a∗)(t−s)/�m, the constants
a−, �m, h and c are given by (6)–(9).

Proof. The existence and uniqueness of solution pro-
cess {x(t), t � t0} follows from Friedman (1975), so we
need only to prove (11). For any given t > t0, suppose
that �(t) has j switching points in [t0, t), and denote
these j switching points by t1, . . . , tj , respectively; and for
l = 0, 1, . . . , j , let �tl

= [�M(AT
�(tl )

P�(tl ) + P�(tl )A�(tl )) +
2kc2]/�m(P�(tl )). Noticing that �M(P�(tl ))=1, by Lemma 1 we

have E{xT(t)P�(tj )x(t)}�e
�tj

(t−tj )
E‖x(tj )‖2+2k

∫ t

tj
e
�tj

(t−s)

Eb2(s) ds, which together with (7) gives

E‖x(t)‖2 ��−1
m

(
e
�tj

(t−tj )
E‖x(tj )‖2

+2k

∫ t

tj

e
�tj

(t−s)
Eb2(s) ds

)
. (12)
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Similarly, for l = 1, 2, . . . , j we can obtain

E‖x(tl)‖2 ��−1
m

(
e�tl−1

(tl−tl−1)E‖x(tl−1)‖2

+2k

∫ tl

tl−1

e�tl−1
(t−s)Eb2(s) ds

)
. (13)

Hence, it follows from (12) to (13) that

E‖x(t)‖2 ��−(j+1)
m e

�t0
(t1−t0)+···+�tj

(t−tj )
E‖x0‖2

+ 2k�−1
m

∫ t

tj

e
�tj

(t−s)
Eb2(s) ds

+ 2k

j−1∑
l=0

�l−j−1
m

∫ tl+1

tl

e�tl
(tl+1−s)Eb2(s) ds

× e
�tl+1

(tl+2−tl+1)+···+�tj
(t−tj )

. (14)

Notice that N�(t0, t) = j ; N�(s, t) = 0, ∀s ∈ [tj , t); and for
l = 0, 1, . . . , j − 1, N�(s, t) = j − l, ∀s ∈ [tl , tl+1); �M = 1
and �−1

m = eh in (8). Then, we have �−1
m = eh[1+N�(tj ,t)] for

s ∈ [tj , t); and �−(j−l+1)
m = eh[1+N�(s,t)] for s ∈ [tl , tl+1) (l =

0, 1, . . . , j − 1). In particular, we have �−(j+1)
m = eh[1+N�(t0,t)].

By Definition 4 and the definitions of a−, a+, �m

and �tl
, one can get �t0

(t1 − t0) + �t1
(t2 − t1) + · · · +

�tj
(t − tj )�	(t0, t); �tj

(t − s)�	(s, t); and for l =
0, 1, . . . , j − 1, �tl

(tl+1 − s) + �tl+1
(tl+2 − tl+1) + · · · +

�tj
(t − tj )�	(s, t), where 	(s, t) = (1/�m)[a+T +

� (s, t;A) −
a−T −

� (s, t;A) + 2kc2(t − s)]. This together with (14) gives

E‖x(t)‖2 �e−h+hN�(t0,t)+	(t0,t)E‖x0‖2 + 2ke−h
∑j

l=1

∫ tl
tl−1

ehN�(s,t)+	(s,t)Eb2(s) ds + 2ke−h
∫ t

tj
ehN�(s,t)+	(s,t)Eb2(s) ds.

Thus, by Remark 4 we have (11).

Theorem 1. For System (2), if E‖x0‖2 < ∞ and �(t, x) satis-
fies (9) with c <

√
a−/(2k), then

(i) when b(t) satisfies C � supt � t0
Eb2(t) < ∞, System

(2) is MS stable for any a∗ ∈ (2kc2, a−] and �(t) ∈
S2[a∗, h�m/(a∗ − 2kc2);A];

(ii) when b(t) satisfies∫ ∞

t0

Eb2(t) dt < ∞. (15)

System (2) is MS stable for any a∗ ∈ (2kc2, a−] and �(t) ∈
S1[a∗, h�m/(a∗ − 2kc2);A]. Here, a−, �m, h are given
by (6)–(8).

Proof. For any given x0 ∈ Rn, by Friedman (1975) there is a
unique solution process {x(t), ∀t � t0} with x(t0) = x0. So, we
need only to prove the MS stability.

(i) By the definition of �(·, ·) in (11) and (3) we have

�(t0, t)�hN0 +
(

h

��
− a∗ − 2kc2

�m

)
(t − t0), (16)

�(s, t)�hN0 +
(

h

��
− a∗ − 2kc2

�m

)
(t − s). (17)

From Definition 4, �(t) ∈ S2[a∗, h�m/(a∗ − 2kc2);A] im-
plies that �� > h�m/(a∗ − 2kc2), or equivalently, h/�� −
(a∗ − 2kc2)/�m < 0. This together with (11) and C =
supt � t0

Eb2(t) < ∞ gives E‖x(t)‖2 �eh+hN0(E‖x0‖2 +
2kC

∫∞
t0

e(h/��−(a∗−2kc2)/�m)s ds) < ∞. Thus, System (2) is
MS stable.

(ii) Noticing that for any �(t) ∈ S1[a∗, h�m/(a∗−2kc2);A]
and t − s�0, we have (16)–(17) and h/�� − (a∗ −
2kc2)/�m �0. This together with (11) and (15) leads to
E‖x(t)‖2 �eh+hN0(E‖x0‖2 + 2k

∫∞
t0

Eb2(s) ds) < ∞. Thus,
System (2) is MS stable. �

Remark 5. By Definition 4, �(t) ∈ S2[a∗, h�m/(a∗ −
2kc2);A] in Theorem 1 (i) implies that the average dwell-time
�� of �(t) satisfies the inequality �� > h�m/(a∗ − 2kc2), which
gives a lower bound of ��. This lower bound is weakened to
�� �h�m/(a∗−2kc2) in Theorem 1 (ii). Such a condition seems
unavoidable even for the switched deterministic system case:

Example 1. Consider system ẋ(t)=A�(t)x(t) with x(0)=(
1
1 ),

�(t) : [0, ∞) → {1, 2}, A1 = (
−1
0

3
−1 ) and A2 =AT

1 . By some
simple calculations, one can see that limt→∞ ‖x(t)‖ = ∞, if

�(t) =
{

1, t ∈ [2l, 2l + 1),

2, t ∈ [2l + 1, 2l + 2);
and limt→∞ ‖x(t)‖ = 0, if

�(t) =
{

1, t ∈ [6l, 6l + 3),

2, t ∈ [6l + 3, 6l + 6),

where l = 1, 2, . . . .

This shows that for general switched systems, the whole
systems may be unstable even if its all subsystems are stable,
unless some limitations to lower bound of �� of the switching
law �(t) are imposed.

Theorem 2. In addition to the conditions of Theorem 1,
(i) if the condition (15) on b(t) is replaced by

∫ ∞

t0

exp

(
a− − 2kc2

�m

t

)
Eb2(t) dt < ∞, (18)

then for any a∗ ∈ (2kc2, a−] and �(t) ∈ S1[a∗, �∗;A], System
(2) is EMS stable with convergent rate a. Here, a ∈ (0, (a∗ −
2kc2)/�m), �∗ = h/((a∗ − 2kc2)/�m − a), and a−, �m and h
are given by (6)–(8).

(ii) if the condition on �(t, x(t)) is strengthened to

‖�r (t, x(t))‖�c‖x(t)‖, r = 1, 2, . . . , k, (19)

where c is a nonnegative constant satisfying kc2 < a−, then for
any given a∗ ∈ (kc2, a−] and �(t) ∈ S1[a∗, �∗;A], System
(2) is EMS stable with convergent rate a. Here, a ∈ (0, (a∗ −
kc2)/�m), �∗ =h/((a∗ −kc2)/�m −a), and a−, �m, h are given
by (6)–(8).



W. Feng, J.-F. Zhang / Automatica 42 (2006) 169–176 173

Proof. The existence and uniqueness of {x(t), ∀t � t0} follows
from Friedman (1975), so it suffices to show the EMS stability
of System (2).

(i) Take arbitrarily Pi ∈ Pi (i ∈ I). By Definition 4 and
�∗ = h/((a∗ − 2kc2)/�m − a), for any �(t) ∈ S1[a∗, �∗;A],
we have �� ��∗, or equivalently, a�(a∗ − 2kc2)/�m − h/��.
This together with (3) gives �(s, t)�hN0 − a(t − s). Then,
from (11) and 0 < a < (a∗ − 2kc2)/�m < (a− − 2kc2)/�m

it follows that E‖x(t)‖2e−(1+N0)h+a(t−t0) �E‖x0‖2 + 2k∫∞
t0

ea(s−t0)Eb2(s) ds�E‖x0‖2 + 2k
∫∞
t0

e((a−−2kc2)/�m)(s−t0)

Eb2(s) ds. Hence, by (18) and a > 0 we know that System (2)
is EMS stable with convergent rate a.

(ii) For any given t � t0, suppose that �(t) has j switching
points in the time interval [t0, t), and denote these j switching
points by t1, t2, . . . and tj , respectively; and, for l=0, 1, . . . , j ,
let �tl

= [�M(AT
�(tl )

P�(tl ) + P�(tl )A�(tl )) + kc2]/�m(P�(tl )).

Then, noticing that �M(P�(tl )) = 1, by Corollary 1 we have

E{xT(t)P�(tj )x(t)}�e
�tj

(t−tj )
E {xT(tj )P�(tj )x(tj )}�e

�tj
(t−tj )

E‖x(tj )‖2. Further, by the definition (7) of �m we have

E‖x(t)‖2 ��−1
m e

�tj
(t−tj )

E‖x(tj )‖2. Similarly, we can get

⎧⎪⎨
⎪⎩

E‖x(tj )‖2 � �−1
m e

�tj−1
(tj −tj−1)

E‖x(tj−1)‖2,
...

E‖x(t1)‖2 � �−1
m e�t0

(t1−t0)E‖x(t0)‖2.

Hence, E‖x(t)‖2 ��−(j+1)
m e

�t0
(t1−t0)+···+�tj

(t−tj )
E‖x0‖2. By

(8) and �M = 1 we have �−1
m = eh, which together with

N�(t0, t) = j gives �−(j+1)
m = eh+hN�(t0,t).

From (4) to (7) it follows that �M(AT
�(tl )

P�(tl ) + P�(tl )A�(tl ))

�a+ when �(A�(tl )) ⊂ C−, and �M(AT
�(tl )

P�(tl ) +P�(tl )A�(tl ))

� − a− when �(A�(tl )) /⊂ C−. Then, by Definition
4 we have �t0

(t1 − t0) + �t1
(t2 − t1) + · · · + �tj

(t −
tj )�[a+T +

� (t0, t;A) − a−T −
� (t0, t;A) + kc2(t − t0)]/�m.

This implies E‖x(t)‖2 � exp(h+hN�(t0, t)+kc2(t − t0)/�m +
[a+T +

� (t0, t;A) − a−T −
� (t0, t;A)]/�m)E‖x0‖2, which to-

gether with Remark 4 leads to

E‖x(t)‖2 � exp(h + hN�(t0, t)

+ (kc2 − a∗)(t − t0)/�m)E‖x0‖2. (20)

By Definition 4 and

�∗ = h/((a∗ − kc2)/�m − a)

we see that for ∀�(t) ∈ S1[a∗, �∗;A], �� ��∗, or equivalently,
a�(a∗ −kc2)/�m −h/��. This together with (3) and (20) gives

E‖x(t)‖2 �eh(1+N0)−a(t−t0)E‖x0‖2.

Thus, System (2) is EMS stable with convergent rate a. �

Remark 6. In fact, for any PD matrix Pi(i ∈ I), if all the
conditions of Theorems 1 and 2 hold with a+, a−, �m and kc2

replaced by

max
1� i �N

max(�M(PiAi + AT
i Pi), 0),

min
1� i �N

| min(�M(PiAi + AT
i Pi), 0)|,

min1� i �N �m(Pi) and kc2 max1� i �N �M(Pi), respectively,
then the conclusions of Theorems 1–2 are still true.

All the above results have their corresponding corollaries.
Here, we give only two corollaries to Theorem 2 (i).

Corollary 2. For System (2), if Ai +AT
i < 0 (i ∈ I), and (18)

holds with a− replaced by �� min1� i �N |�M(Ai +AT
i )|, then

under the conditions of Theorem 2(i), System (2) is EMS stable
with convergent rate � − 2kc2 for all �(t).

Proof. Noticing that the definition of �, and for this corollary,
since Ai+AT

i < 0 we have T +
� (s, t;A) ≡ 0, a+=0 and a−=�,

and can take Pi ≡ I (i ∈ I) which implies �M = �m = 1.
Similar to the proof of Lemma 2, we know System (2) is EMS
stable with convergent rate � − 2kc2. �

Corollary 3. For System (2), in addition to the conditions of
Theorem 2(i), suppose �(Ai) ⊂ C−(i ∈ I), and AT

ip
+Aip < 0

for p = 1, . . . , N1(N1 < N). Let

� = min

(
min

1�p�N1
|�M(Aip + AT

ip
)|, min

N1+1�p�N
|aip |

)

with ai given in (4). Then the conclusion of Theorem 2(i) is true
for any a ∈ (0, (�−2kc2)/ min(�m, 1)) and �(t), provided that
(18) holds with a− replaced by �, and the average dwell-time ��
on {AiN1+1 , . . . , AiN } satisfies �� �h/((�−2kc2)/ min(�m, 1)−
a).

Remark 7. Corollary 2 shows that when Ai (i ∈ I) have a
common Lyapunov matrix P = I , there is no need to make any
restriction to �(t) to ensure the EMS stability of the system,
namely the switch can be arbitrary. This remark is also valid
when P 	= I .

Remark 8. Corollary 3 shows that for any �(t) there is no need
to impose any restriction to the switching frequency of �(t) on
{Ai1 , . . . , AiN1

}.

4. Stabilization control of SS systems

Based on Theorems 1–2, we can establish a series of stabi-
lization results. Here, for simplicity, we will discuss only the
ones corresponding to Theorem 2(ii), that is, under the assump-
tion (19), we would like to design a state feedback control of
the form u�(t)(t) = K�(t)x(t) such that the closed-loop system

dx(t) = Ā�(t)x(t) dt + �(t, x(t)) dW(t), x(t0) = x0 (21)

is EMS stable, where Ā�(t) = A�(t) + B�(t)K�(t).
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In the following, we denote all Ki by K with proper dimen-
sion, for short.

Let Ā = {Āi , i ∈ I}. Obviously, if all Āi in Ā are stable,
then for any given PD matrix Qi , there exists a PD matrix
Pi(K) such that

ĀT
i Pi(K) + Pi(K)Āi = −Qi ∀i ∈ I. (22)

By Lemma 3.2 of Cheng et al. (2005), for a controllable
subsystem (Ai, Bi) of System (1), one can arbitrarily change
the �M(Pi(K)) with proper feedback matrix K; but for an
UCbS subsystem (Ai, Bi) of System (1), the case is different.
This means that one has to explicitly characterize the domi-
nant impact of the uncontrollable eigenvalue of (Ai, Bi) on
�M(Pi(K)). To do so, set

K(Ai, Bi) = {K : 
(Āi , Bi)��(Ai, Bi)}, (23)

where 
(Āi , Bi) is the largest real part of all controllable eigen-
values of (Ai, Bi), and �(Ai, Bi) denotes the largest negative
real part of all uncontrollable eigenvalues of (Ai, Bi).

Then, for an UCbS subsystem (Ai, Bi), we define

{
�(i)
M = min

K∈K(Ai ,Bi)
�M(Pi(K)),

K0i = {K : K ∈ K(Ai, Bi), �
(i)
M = �M(Pi(K))}.

(24)

Further, for System (1), suppose that subsystems (Aip , Bip )
are controllable for p = 1, . . . , N1(�N), and are UCbS for
p = N1 + 1, . . . , N . For the PD matrices Qi and Pi(K) in
(22), let �i =�M(ĀT

i Pi(K)+Pi(K)Āi); and similar to (4)–(6),
introduce

{
a+(Ā) = max

i∈I
max(�i , 0),

a−(Ā) = min
i∈I

| min(�i , 0)|, (25)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

�M = max

(
max

1�p�N1
�M(Pip (K)), max

N1+1�p�N
�
(ip)

M

)
,

�m = min

(
min

1�p�N1
�m(Pip (K)),

min
N1+1�p�N

inf
K∈K0ip

�m(Pip (K))

)
.

(26)

Remark 9. Obviously, for any UCbS subsystem (Ai, Bi) the
set K0i is nonempty.

Remark 10. For any given PD matrices Qi , it is clear that
a+(Ā) ≡ 0 for any K guaranteeing all Āi stable. Meanwhile,
by Definition 4 we have T +

� (s, t; Ā) ≡ 0, so a∗ can be taken
as a−(Ā) in both S1[a∗, �∗; Ā] and S2[a∗, �∗; Ā].

Remark 11. When N1 < N , the constant �M has a lower bound

maxN1+1�p�N �
(ip)

M .

Replacing a− and kc2 with a−(Ā) and kc2�M , respectively,
in Theorem 2(ii), by Remark 5 we can get

Lemma 3. If �(t, x) satisfies (19), and there are Ki (i ∈ I)

such that all the Āi = Ai + BiKi ∈ Ā (i ∈ I) are stable and
the PD matrices Pi(Ki) and Qi (i ∈ I) satisfy

kc2�M < a−(Ā), (27)

then for any �(t) ∈ S1[a−(Ā), �a; Ā], System (21) is EMS
stable with convergent rate a. Here, a ∈ (0, (a−(Ā) −
kc2�M)/�m], �a = (ln(�M/�m))/((a−(Ā) − kc2�M)/�m − a),
and a−(Ā), �M and �m are given in (25)–(26).

Remark 12. Stabilizing System (21) is not essentially depen-
dent on the choice of PD matrices Qi , although the definitions
of a−(Ā), �M and �m in Lemma 3 and (25)–(26) are obvi-
ously related to the choice of Qi . In particular, when �M = �m

(denote them with �, for short), Lemma 3 becomes a special
case of Corollary 1 (with some changes on the conditions and
conclusions in accordance with Theorem 2(ii)): for any given
switching law �(t), System (21) is EMS stable with convergent
rate a−(Ā)/� − kc2.

Definition 5. For ∀t � t0, if the value of �(s) is well-defined
and available to the control design for all s ∈ [t0, t], then the
process �(·) is said observable.

Remark 13. By Definition 5, if a switching law �(·) is ob-
servable, then, at any time instant t > t0, the value �(s), ∀s ∈
[t0, t], is given and available to control design, although the
information on {�(s) : s > t} may be unknown. This is the es-
sential difference between the switched system control and the
conventional time-varying system control (Anderson & Moore,
1971). The latter requires that the value of the time process �(t)

(and hence, A�(t) and B�(t)) on the whole control time interval
[t0, ∞) is completely known at time t0.

Theorem 3. For System (1), suppose that subsystems (Ai, Bi)

(i ∈ I) are controllable (that is, N1 = N in (26)), �(t, x(t))

satisfies (19), switching law �(·) is observable and �(·) ∈
S[�∗, N0] for some given constants N0 �0 and �∗ > 0, then
there exists a state feedback u�(t)(t)=K�(t)x(t) such that Sys-
tem (21) is EMS stable with convergent rate a ∈ (0, [1 −
kc2�M ]/�m). Here, S[�∗, N0], N0 and �∗ are given in Defini-
tion 3, �m and �M in (26).

Proof. By Remark 12, one can simply take Qi = I (i ∈ I).
In this case, we have a−(Ā) = 1.

Since (Ai, Bi) are controllable, there exist feedback matrices
Ki ∈ Rmi×n such that �(Āi) ⊂ (−∞, 0), where Āi = Ai +
BiKi . By Lemma 3.2 of Cheng et al. (2005) we can obtain

�M(Pi) = ‖Pi‖ = ‖ ∫∞
0 eĀT

i teĀi t dt‖�(M2/2)�n2+n−3. Thus,
without loss of generality, we assume that Ki has already been
chosen such that �m and �M in (26) are sufficiently small so that

kc2�M + �m

�∗ ln
�M

�m

< 1 = a−. (28)
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In fact, noticing lim�→0+ � ln �=0, from the straightforward in-
equality |(�m/�∗) ln(�M/�m)|�(1/�∗)[|�m ln �m|+|�M ln �M |]
we know that when �m and �M are sufficiently small, (28) must
be true.

In this case, if �m=�M=�, then by Remark 12, System (21) is
EMS stable with convergent rate 1/�−kc2; when �m 	= �M , let
a=(1−kc2�M)/�m−(1/�∗) ln(�M/�m). Then, by (28) one can
see that a ∈ (0, [1 − kc2�M ]/�m) and the average dwell-time
�∗ of S[�∗, N0] can be expressed as �∗ = (ln(�M/�m))/((1 −
kc2�M)/�m − a). Hence, by Definitions 3–4, we have �(·) ∈
S1[1, �∗; Ā]. Thus, by Lemma 3, System (21) is EMS stable
with convergent rate a. �

Remark 14. By Theorem 3, for any given constant c > 0 in
(19), System (21) can be stabilized by state feedback control
if all (Ai, Bi) (i ∈ I) are controllable. However, when some
subsystem is uncontrollable, in order to stabilize System (1),
some restriction to the constant c in (19) seems necessary. To
see this, we present the following example.

Example 2. Assume (A, B) is a subsystem of a switched sys-
tem with

A =
(−2 0

0 −1

)
and B =

(
1
0

)
.

Obviously, (A, B) is uncontrollable. For any given feedback
matrix K = (k1, k2), the state matrix of the closed-loop system
is with the form

Ā = A + BK =
(

k1 − 2 k2
0 −1

)
,

which gives

eĀt =
(

e(k1−2)t ∗
0 e−t

)
,

where ∗ denotes a function of t depending on k1 and k2. When
K is such that �(Ā) ⊂ (−∞, 0) (in this case, k1 < 2 and k2
can be an arbitrary real number), the solution matrix P of the
Lyapunov equation ĀTP + P Ā = −I can be expressed as

P =
∫ ∞

0
eATteAt dt =

⎛
⎝− 1

2(k1 − 2)
�

�
1

2
+ ∫∞

0 ∗2 dt

⎞
⎠ ,

where � is a nonnegative constant depending on k1 and k2.
Hence, we have �M(P )=‖P ‖� 1

2 +∫∞
0 ∗2 dt � 1

2 . This implies
that the �M in (26) is greater than 1

2 for all state feedback
controls. Thus, in order to get the condition 1 − kc2�M > 0, c
must be less than 1/

√
k�M , where k is the dimension of noise

coefficient matrix �(t, x(t)).

For the case where only a part of subsystems of the System
(1) is controllable, we have the following stabilization theorem.

Theorem 4. For System (1), suppose that subsystems (Aip ,
Bip ) are controllable for p = 1, . . . , N1(< N), and UCbS for

p =N1 +1, . . . , N , �(t, x(t)) satisfies (19), switching law �(t)

is observable and �(t) ∈ S[�∗, N0] for some constants N0 �0

and �∗ > 0. If 1−kc2 maxN1+1�p�N �
(ip)

M > 0, then there exists
a state feedback u�(t)(t) = K�(t)x(t) such that System (21) is
EMS stable with convergent rate a ∈ (0, [1 − kc2�M ]/�m).

Here, S[·, ·] and �
(ip)

M is given in Definition 3 and (24), �m and
�M in (26).

Proof. Similar to Theorem 3, for (22), choose Qi = I (i ∈ I).
Then, a−(Ā) = 1. Without loss of generality, assume ip = p.
Then, (Ai, Bi) is controllable for i=1, . . . , N1(< N) and UCbS
for i = N1 + 1, . . . , N .

Since (Ai, Bi) (N1 + 1� i�N) is stabilizable, there exists
Ki ∈ K0(Ai, Bi) such that the solution Pi(Ki) of (22) satisfies
�(i)
M = �M(Pi(Ki)). This together with the condition of this

theorem implies that 1 − kc2 maxN1+1� i �N �(i)
M > 0.

Notice that (Ai, Bi) (1� i�N1) are controllable. Then,
similar to the proof of Theorem 3, by Lemma 3.2 of
Cheng et al. (2005) we know that there exists Ki ∈
Rmi×n such that not only (22) has a unique PD solution
matrix Pi(Ki) but also �M(Pi(Ki)) is sufficiently small
so that max1� i �N1 �M(Pi(Ki))�maxN1+1� i �N �(i)

M , and
min1� i �N1 �m(Pi(Ki))�minN1+1� i �N infK∈K0i

�m(Pi(K)),

or equivalently, by (26),

�M = max
N1+1� i �N

�(i)
M , �m = min

1� i �N1
�m(Pi(Ki)). (29)

As in Theorem 3, we can choose Ki such that �m is sufficiently
small so that (28) holds, where �M and �m are given in (29).

Let a=(1−kc2�M)/�m−(1/�∗) ln(�M/�m). Then a > 0 and
the average dwell-time �∗ of S[�∗, N0] can be expressed as
�∗=((1−kc2�M)/�m−a)−1 ln(�M/�m). Hence, by Definitions
3–4, we have �(t) ∈ S1[a−(Ā), �∗; Ā], where a−(Ā) = 1.
Therefore, by Lemma 3, System (21) is EMS stable with con-
vergent rate a. �

5. Concluding remark

By introducing two compact matrix sets D and D�, we
have studied the MS stability of a class of switched system
with stochastic disturbances. Based on the concept of average
dwell-time and the ratio of the total time running on all un-
stable subsystems to the total time running on all stable sub-
systems, some sufficient conditions on MS stability and EMS
stability are given, respectively. The impact of the uncontrol-
lable part of an UCbS stochastic system on the convergent
rate of the closed-loop system is analyzed, and the stabiliza-
tion control problems of two classes of SS control systems are
investigated. One is with all subsystems controllable, and the
other is with some subsystems controllable and some UCbS.
Some sufficient conditions on the EMS stability of the closed-
loop systems, and the convergent rates of the closed-loop sys-
tems are given. Unlike conventional time-varying parameter
systems, here it is only required that the switching law is
observable.
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